ANSWERS: CHAPTER 10

MATCHING

1. p 7. f 13. g 19. c
2. u 8. j 14. i 20. o
3. k 9. e 15. s 21. d
4. h 10. r 16. m 22. t
5. q 11. l 17. w 23. x
6. a 12. b 18. n 24. v

IMAGE LABELING

1. diaphragm
2. liver
3. serosal bowel implants
4. colon
5. nodes
6. ovaries
7. pleura
8. omentum
9. stomach
10. pelvic peritoneal implant
11. liver edge ascites
12. right lobe of liver
13. left lobe of liver
14. stomach
15. transverse colon
16. left paracolic gutter
17. small bowel
18. cul-de-sac
19. rectum
20. right paracolic gutter

MULTIPLE CHOICE

1. c 6. c 11. c 16. b
2. d 7. d 12. b 17. a
3. a 8. b 13. a 18. d
4. c 9. a 14. b 19. c
5. b 10. d 15. c 20. b

FILL-IN-THE-BLANK

1. poor
2. confined to the ovary
3a. BRCA1
3b. BRCA2
4a. air
4b. water
4c. diet
5a. septations
5b. solid
6a. pelvic cul-de-sac
6b. paracolic gutters
6c. right
7a. pelvic organs
7b. peritoneal
7c. lymphatic

8. peritoneal
9a. 25
9b. 90
10. epithelial
11a. alpha fetoprotein
11b. lactate dehydrogenase
11c. carcinoembryonic antigen
11d. human chorionic gonadotropin
12a. CT
12b. intravenous
12c. oral
13. EV ultrasound
14a. benign
14b. malignant
15. peristalsis
16a. signet ring
16b. mucoid
17. ovarian
18. late
19. laparotomy
20. epithelium

SHORT ANSWER

1. Factors that determine ovarian cancer prognosis are:
 1. The stage or extent of the disease when it is first diagnosed
 2. The tumor grade (the histopathologic classification or the degree of cellular differentiation)
 3. The extent of residual disease after initial surgical excision
 4. The tumor response to types of treatment given

 Stage I ovarian cancer is confined to the ovary. Its survival rate with early detection is 90%.

2. Ovarian cancer is similar to breast cancer due to the fact that a strong family history (maternal or sibling) places a woman at a significantly higher risk. Genetics is a criterion for screening studies. Women with a positive family history for ovarian cancer should consult specialists about their individual risk.

3. Ovarian cancer. Laboratory detection of malignancies, including ovarian carcinoma searches for telltale substances in the serum or plasma of patients who harbor a malignancy. Cancer cells, or the patient’s immune system, produces substances, which may be proteins, hormones, or enzymes. These substances have been termed “tumor markers.”
4. Ovarian carcinoma results in significant laboratory elevations of certain tumor markers. No assay is unique to the ovary or sensitive enough for use as a screening test; although, in a patient with a known pelvic mass, certain laboratory tests may be helpful in the diagnosis. Keep in mind, some assays used clinically as a marker of disease status help in the diagnosis of recurrent ovarian cancer through continued monitoring. Also, a decreasing level indicates effective therapy, whereas an increasing level indicates tumor recurrence. CA 72-4 and CA 15-3 are two newly identified markers that can be used in combination with CA 125. Frequently, elevation of these three antigens suggests malignancy. As a screening tool, the sensitivity of CA 125 in detection of early ovarian cancer is low and a normal antigen level (<35 U/ml) does not necessarily exclude the presence of disease.

5. Pelvic physical examination; medical imaging, beginning with transabdominal and transvaginal approach to include power and color Doppler, radiography, CT scan, MRI, and PET scan. Laboratory assays (CA 125, AFP, CEA, hCG, LDH, CA 72-4, CA 15-3).

IMAGE EVALUATION/PATHOLOGY

1. Images A and B demonstrate an ovary with a multiseptated cyst displaying projections extending internally (open arrows). Image B shows flow in the thick separating membrane (long arrows). The complex fluid, cystic septations, and complex fluid suggest ovarian malignancy. A C8-4v transducer collected these images (seen at image top center).

2. This is a transabdominal transverse pelvis demonstrating the uterus, right ovary with a simple cyst (small open arrow), distended urinary bladder (large open arrow), uterus (thick arrow), and left adnexal dermoid (thin arrow).

3. The long arrows are directed at an ovary afflicted with a Krukenberg tumor, usually metastatic from gastrointestinal cancer, marked by areas of mucoid degeneration and by the presence of signet-ring cells. The open arrow reveals hypervascularity of the septations and solid intraluminal nodules. Both views are endovaginal sagittal images.

4. This image reveals a pre-predominately solid mass with a heterogeneous internal echo texture complete with septations.

5. Both images were collected using 3-D multiplanar technology with surface rendering. Image A demonstrates the internal architecture of a simple cyst with a smooth regular wall. The surface rendering in image B clearly shows internal wall projections (arrow) into an ovarian cyst.

CASE STUDY

1. The well-circumscribed mass (arrowhead) in the right upper lobe of the lung has the expected radiographic appearance of a metastasis. Primary lung cancer frequently relocates to the ovary in the form of a Krukenberg tumor, which demonstrates with areas of mucoid degeneration. They are usually bilateral and solid in appearance, and the prognosis is poor.

2. Due to the clinical information stating amenorrhea, the patient’s age, and findings of pelvic mass on physical examination, dysgerminoma is the suspected diagnosis based on ultrasound. Dysgerminoma occurs in adolescents or young women and is often solid. It can be the cause of amenorrhea. Image A shows a surgical example of dysgerminoma. These tumors are solid with a gray, fleshy, and lobulated cut surface. They are principally solid with some cystic areas, as seen with TV ultrasound.